II. LOOK FOR CIRCLE EQUATIONS ^^
Now the reverse, how to find the equation of the circle if known its center and radius.
Determine the equation of the circle below :
1. Center (0,0) r = 3
2. Center (-3, -1) r = 6
3. Point (6, 8) is on a Circle A the center is (0.0). The circle equations?
Answer
3. Point (6, 8) is on a Circle A the center is (0.0). The circle equations?
Answer
1. For the center (0,0) The circle equation : x² + y² = r²
o So, the equation circle = x²
+ y² = 3
2. For the center not (0,0) r The circle equation : (x-a)² + (y-b)² =r²
o So, the equation circle = ( x-(-3) )² + ( y – (-8)
)² = 6²
o The equation circle = (x+3)² +
(y+8)² = 6²
3. For the Center (0,0) and point (6.8) are in the circle,
because passed on the circle. (6.8) as (x, y)
• Equation circle when center (0,0) = x² + y² = r² (x,y) = (6,8)
Because radius unknown we seek it first:
x² + y² = r²
6² + 8² = r²
r² = 100
then the equation circle = x² + y² = 10²
because passed on the circle. (6.8) as (x, y)
• Equation circle when center (0,0) = x² + y² = r² (x,y) = (6,8)
Because radius unknown we seek it first:
x² + y² = r²
6² + 8² = r²
r² = 100
then the equation circle = x² + y² = 10²
So now, how to determine Circle Equations if the circle passed on some 3 points that located in the circle itself ^^
Example :
A Circle x²
+ y² + Ax + By + C = 0 passed on 3 points (2,0) , (0, -2) , (4, -2) The Circle Equations is?
Insert the points to the x²
+ y² + Ax + By + C = 0 as (x,y)
(2,0) ---> 2² + 0² + A(2) + B.0 + C = 0
4 + 2A + 0 + C = 0 ........................ (1)
(0, -2) --> 0² + (-2)² + A.0 + B(-2) + C = 0
4 – 0 - 2B + C = 0 .......................... (2)
(4, -2) ---> 4²
+ (-2)² + A(4) + B(-2) + C = 0
16
+ 4 + 4A - 2B + C = 0
20 + 4A - 2B + C
= 0 ....................(3)
there are 3 quations and let's solve the equations!
Eliminate (1) dan (2)
4 + 2A + 0 + C = 0 ....
(1)
4 – 0 - 2B + C = 0 ..... (2)
-------------------------------- -
0 + 2A + 2B + 0 = 0 .... (4)
Eliminate (3) dan (2)
20 + 4A - 2B + C = 0 ...(3)
4 – 0 - 2B + C = 0 ..... (2)
------------------------------ -
A = -4 -------> Substitute A as -4 to .... (4)
2A + 2B = 0 ---> -8 + 2B = 0 --> B =4
Substitute A and B as its value to equations number (1) / (2) / (3)
4 + 2A + 0 + C = 0 ....
(1)
4 – 8 + 0 + C = 0
4 – 8 + 0 + C = 0
C = 4
after we found all the value A, B,
C insert them to : x² + y² + Ax + By + C = 0
So the Circle Equations x² + y² - 4x + 4y + 4 = 0 ^^
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.