Postingan

Menampilkan postingan dari Juli, 2015

Pembahasan Soal Fungsi Matematika

Gambar
1.       G(x) = x 2 – x + 3       Fog)(x) = 3x 2 – 3x + 4       F(x-2) = ....     

Function Composition

WELCOME EVERYBODY! ^^ TODAY I'LL POST ABOUT FUNCTION COMPOSITION, HIGHSCHOOL GRADE. THIS MATERIAL IS SO CHALLENGING. BUT YOU CAN GET USED TO IT! ^^   The Basic Characteristic Of Function Compositions        I.           Composition Function is : ( f o g ) (x) =   f( g(x) )   = f composition g for x Example ^^ :   f(x) = 5x – 4 and g(x) = 2x + 8 ( f o g )? = f ( g(x) )   f( 2x + 8 )   ----->   5( 2x + 8 ) – 4 ---> 10x + 40 – 4 ----> 10x + 36 as you can see above ... Basically change the X value of F(x) into g(x) so become f ( g(x) ) = f( 2x + 8 )    and because the F (x) = 5 x – 4 logically F ( 2x + 8) = 5 ( 2x + 8) – 4      ^^    ----->    10x + 8 How about ( g o f )? Value still the same : f(x) = 5x – 4 and g(x) = 2x + 8 ( g o f ) =   g( f(x) ) g( 5x -4 ) -...

How To Determine Circle Equations

Gambar
II.         LOOK FOR CIRCLE EQUATIONS ^^          Now the reverse, how to find the equation of the circle if known its center and radius.      Determine the equation of the circle below : 1.      Center (0,0) r = 3 2.      Center (-3, -1) r = 6 3.   Point (6, 8) i s on a Circle A the center is (0.0). The circle equations?              Answer     1. For the center (0,0) The circle equation   : x² + y² = r²      o    So, the equation circle =  x² + y² = 3 2. For the center not (0,0) r The circle equation   : (x-a)² + (y-b)² =r² o    So, the equation circle = (  x-(-3) )² + ( y – (-8) )² = 6² o    The equation circle = (x+3)² + (y+8)² = 6² 3. For the Center ( 0,0) and point ( 6.8) ...

Cara Menentukan Persamaan Lingkaran

Gambar
Menentukan persamaan lingkaran jika diketahui pusat dan jari-jari.      Tentukan persamaan lingkaran berikut : 1. Pusat (0,0) Jari-jari = 3 2. Pusat (-3, -1) Jari-jari = 6 3. Titik (6, 8 ) melewati lingkaran A yang pusatnya (0,0). Persamaan Lingkaran A?

To Know kinds of Circle Equations, Look For Center and Radius

     THERE ARE 3 TYPES OF CIRCLE EQUATIONS: 1.     The center (0,0) equation : x² + y² = r²      2.     The center (a, b) equation 1 : (x-a)² + (y-b)² =r² 3.      The center (a, b) equation 2 :   x² + y² + Ax  + By + C = 0        atau                                              x² + y² - 2ax – 2by + a 2   + b 2 - r² = 0      Description :     -     a,b  =          center of circle -         x,y =          a point on the circle -       ...

Mengetahui Jenis-jenis Persamaan Lingkaran, Mencari Pusat dan Jari - Jarinya

     ADA 3 JENIS PERSAMAAN LINGKARAN : 1.      Pusat (0,0) persamaan : x² + y² = r²      2.      Pusat (a,b) persamaan 1 : (x-a)² + (y-b)² =r² 3.      Pusat (a,b) persamaan 2 :   x² + y² + Ax   + By + C = 0        atau                                              x² + y² - 2ax – 2by + a 2   + b 2 - r² = 0      Keterangan :     -     a,b =          pusat lingkaran -         x,y =          suatu titik di lingkaran -         r ...