Cari Blog Ini

Pembahasan Soal Fungsi Matematika


1.      G(x) = x2 – x + 3
      Fog)(x) = 3x2 – 3x + 4
      F(x-2) = ....
    

Function Composition

WELCOME EVERYBODY! ^^ TODAY I'LL POST ABOUT FUNCTION COMPOSITION, HIGHSCHOOL GRADE. THIS MATERIAL IS SO CHALLENGING. BUT YOU CAN GET USED TO IT! ^^
 

The Basic Characteristic Of Function Compositions


       I.          Composition Function is :
( f o g ) (x) =  f( g(x) )  = f composition g for x

Example ^^ :

  1.  f(x) = 5x – 4 and g(x) = 2x + 8
( f o g )? = f( g(x) ) 
f( 2x + 8 )  ----->  5( 2x + 8 ) – 4 ---> 10x + 40 – 4 ----> 10x + 36
as you can see above ...
Basically change the X value of F(x) into g(x) so become f( g(x) ) = f( 2x + 8 )   and because the F(x) = 5x – 4 logically F( 2x + 8) = 5( 2x + 8) – 4     ^^   ----->   10x + 8

How about ( g o f )?
Value still the same : f(x) = 5x – 4 and g(x) = 2x + 8
( g o f ) =  g( f(x) )
g(5x -4) ------>  2(5x – 4) + 8   ----->  10x – 8 + 8 = 10x    ^^

The answer is different so this is mean ( f o g )  IS NOT THE SAME AS ( g o f )


2.      F(x) = x2 + 2x – 3 and g(x) = 5x -1
( f o g )? = f( g(x) ) 
f(5x – 1) ------>  (5x – 1)2 + 2(5x – 1) – 3
               ------->  25x – 10x + 1 + 10x – 2 - 3
               ------->  (25x – 4) the answer!

How about ( g o f )(-1) ?
Value still the same :  F(x) = x2 + 2x – 3 and g(x) = 5x - 1
( g o f ) =  g( f(x) ) ---> ( g o f )(-1) = g( f(-1) )
5(x2 + 2x – 3) – 1 ----->  What was asked is ( g o f )(-1) . so change the x from ( f(x) )into value -1 FIRST like this  -----> 5((-1)2 + 2(-1) – 3) – 1 
---> 5(1 -2 – 3) – 1
---> 5(-4) – 1 = -21 the answer!


Here some other Characteristic ^^   :
  1.  Function Compositions is NOT commutative 
           ( f o g )  IS NOT THE SAME AS ( g o f )
     2.  Function Compositions IS Associative
            ( ( f o g ) o h)(x)  =  ( f o (g o h ) )(x)
     3.  There is Identity Function I(x) = x
           so ---> ( f o I )(x) = ( I o f )(x) = f(x)


How To Determine Circle Equations


II.        LOOK FOR CIRCLE EQUATIONS ^^

         Now the reverse, how to find the equation of the circle if known its center and radius.
     Determine the equation of the circle below :
1.     Center (0,0) r = 3
2.     Center (-3, -1) r = 6
3.   Point (6, 8) is on a Circle A the center is (0.0). The circle equations?
            Answer 
  1. For the center (0,0) The circle equation  : x² + y² = r²     
o   So, the equation circlex² + y² = 3


2. For the center not (0,0) r The circle equation  : (x-a)² + (y-b)² =r²
o   So, the equation circle = (  x-(-3) )² + ( y – (-8) )² = 6²
o   The equation circle = (x+3)² + (y+8)² = 6²


3. For the Center (0,0) and point (6.8) are in the circle
because passed on the circle. (6.8) as (x, y)
Equation circle when center (0,0) =
x² + y² = r²   (x,y) = (6,8)
Because radius unknown we seek it first:
+ =
+ =
= 100
then the equation circle = + = 10²





So now, how to determine Circle Equations if the circle passed on some 3 points  that located in the circle itself ^^


Example :
 A Circle x² + y² + Ax + By + C = 0 passed on 3 points (2,0) , (0, -2) , (4, -2) The Circle Equations is?
 


Insert the points to the x² + y² + Ax + By + C = 0 as (x,y)

(2,0) ---> 2² + 0² + A(2) + B.0 + C = 0

                 4 + 2A + 0 + C = 0 ........................ (1)

(0, -2) --> 0² + (-2)² + A.0 + B(-2) + C = 0

                             4 – 0 - 2B + C = 0 .......................... (2)

(4, -2) ---> 4² + (-2)² + A(4) + B(-2) + C = 0

                  16 + 4 + 4A - 2B +  C = 0
                  20 + 4A - 2B +  C = 0 ....................(3)

 
there are 3 quations and let's solve the equations!
Eliminate (1) dan (2)
4 + 2A + 0 + C = 0 .... (1) 
4 – 0 - 2B + C = 0 ..... (2)        
--------------------------------   -
0 + 2A + 2B + 0 = 0 .... (4)  
 
Eliminate (3) dan (2)
20 + 4A - 2B +  C = 0 ...(3)
4 – 0 - 2B + C = 0 ..... (2)    
------------------------------    -

 16 + 4A = 0
 


A = -4 -------> Substitute A as -4 to .... (4)
2A + 2B  = 0 ---> -8 + 2B = 0 --> B =4 
Substitute A and B as its value to equations number (1) / (2) / (3) 
4 + 2A + 0 + C = 0 .... (1) 
 4 – 8 + 0 + C = 0 
C = 4

after we found all the value A, B, C insert them to : x² + y² + Ax + By + C = 0 
So the Circle Equations  x² + y² - 4x + 4y + 4 = 0 ^^ 

Cara Menentukan Persamaan Lingkaran


Menentukan persamaan lingkaran jika diketahui pusat dan jari-jari.

     Tentukan persamaan lingkaran berikut :


1. Pusat (0,0) Jari-jari = 3

2. Pusat (-3, -1) Jari-jari = 6

3. Titik (6, 8 ) melewati lingkaran A yang pusatnya (0,0). Persamaan Lingkaran A?

To Know kinds of Circle Equations, Look For Center and Radius


    THERE ARE 3 TYPES OF CIRCLE EQUATIONS:

1.    The center (0,0) equation : x² + y² = r²     
2.    The center (a, b) equation 1 : (x-a)² + (y-b)² =r²
3.     The center (a, b) equation 2 :  x² + y² + Ax + By + C = 0       atau
                                           x² + y² - 2ax 2by + a2  + b2 - = 0     
Description :   -    a,b  =          center of circle
-        x,y =          a point on the circle
-        r     =          radius
-        A    =          - ½ a
-        B    =          - ½ b
-        C =             a2  + b2 - r²     


I.                HOW TO FIND RADIUS AND CENTER 

 if equation of circle is known

Specify the center and radius of the following circle equation:
1.     Center (0,0) equation : x² + y² = r²   example :
·       x² + y² = 100  -->  center (0,0) radius = 10 because100 = rnot r ^^
·       x² + y² + 19 = 100 -->  center  (0,0) radius = 100-19 = 81 = 9
·        
2.     Center (a,b) equation 1 : (x-a)² + (y-b)² =r² example :
·       (x+3)² + (y+8)² = 6² --> center (3,8) ; r = 6
·       (x+9)² + (y+1)² = 100 --> center (9,1) ; r = 10

3.    Center (a,b) equation 2 :  x² + y² + Ax + By + C = 0 
·       2x² + 2y² - 8x + 5 = 0 
A = 2 -----> - ½ a = -2 ----> a = 4
B = 0 -----> -  ½ b = 0 ----> b = 0
C = a2  + b2 - r² 
5 =  (4)2  + 02 - r²     
=  16 – 5 = 9 à r = 3
center = (4,0) r = 3


Mengetahui Jenis-jenis Persamaan Lingkaran, Mencari Pusat dan Jari - Jarinya


    ADA 3 JENIS PERSAMAAN LINGKARAN :

1.     Pusat (0,0) persamaan : x² + y² = r²     
2.     Pusat (a,b) persamaan 1 : (x-a)² + (y-b)² =r²
3.     Pusat (a,b) persamaan 2 :  x² + y² + Ax + By + C = 0       atau
                                           x² + y² - 2ax 2by + a2  + b2 - = 0     
Keterangan :   -    a,b =          pusat lingkaran
-        x,y =          suatu titik di lingkaran
-        r     =          jari-jari
-        A    =          - ½ a
-        B    =          - ½ b
-        C =             a2  + b2 - r²