Teorema Turunan Fungsi
d(h(x) + g(x) )/dx = h' (x) + g '(x)
d(h (x) - g(x) )/dx = h'(x) - g' (x)
d(h(x) . g(x) )/dx = h'(x).g(x) + g'(x).h(x)
d(h(x) / g(x))/dx = ( h'(x).g(x) - g'(x).h(x) ) / ( g(x) )^2
Turunan Fungsi Trigonometri
y = f(x) = sin x, y' = d(sin x)/dx = cos x
y = f(x) = sin x, y' = d(cos x)/dx = - sin x
y = f(x) = sin x, y' = d(- sin x)/dx = - cos x
y = f(x) = sin x, y' = d(- cos x)/dx = sin x
dalil rantai (chain rule)
d(u)/d(x) = d(u)/d(v) . d(v)/d(x)
d(u)/d(v) = turunan u terhadap v
Pembahasan Soal Turunan Trigonometri
1. tentukan turunan pertama dari f(x) = sin3 (5x + 8)
Jawab
keterangan : sin3 (5x + 8) = (sin (5x + 8) )3
u = sin3 (5x + 8)
v = sin (5x + 8)
f(x) = u = v3
f '(x) = d(u)/d(v) . d(v)/d(x)
= d(sin3 (5x + 8) ) / d(sin (5x + 8)) . d(sin (5x + 8)) / d(x)
= 3 sin^2(5x + 8) . cos (5x + 8) . d(5x + 8)/d(x)
= 3 sin^2(5x + 8) . cos (5x + 8) . 5
= 15 sin^2(5x + 8) . cos (5x + 8)
d(h(x) + g(x) )/dx = h' (x) + g '(x)
d(h (x) - g(x) )/dx = h'(x) - g' (x)
d(h(x) . g(x) )/dx = h'(x).g(x) + g'(x).h(x)
d(h(x) / g(x))/dx = ( h'(x).g(x) - g'(x).h(x) ) / ( g(x) )^2
Turunan Fungsi Trigonometri
y = f(x) = sin x, y' = d(sin x)/dx = cos x
y = f(x) = sin x, y' = d(cos x)/dx = - sin x
y = f(x) = sin x, y' = d(- sin x)/dx = - cos x
y = f(x) = sin x, y' = d(- cos x)/dx = sin x
dalil rantai (chain rule)
d(u)/d(x) = d(u)/d(v) . d(v)/d(x)
d(u)/d(v) = turunan u terhadap v
Pembahasan Soal Turunan Trigonometri
1. tentukan turunan pertama dari f(x) = sin3 (5x + 8)
Jawab
keterangan : sin3 (5x + 8) = (sin (5x + 8) )3
u = sin3 (5x + 8)
v = sin (5x + 8)
f(x) = u = v3
f '(x) = d(u)/d(v) . d(v)/d(x)
= d(sin3 (5x + 8) ) / d(sin (5x + 8)) . d(sin (5x + 8)) / d(x)
= 3 sin^2(5x + 8) . cos (5x + 8) . d(5x + 8)/d(x)
= 3 sin^2(5x + 8) . cos (5x + 8) . 5
= 15 sin^2(5x + 8) . cos (5x + 8)
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.