Function Composition

WELCOME EVERYBODY! ^^ TODAY I'LL POST ABOUT FUNCTION COMPOSITION, HIGHSCHOOL GRADE. THIS MATERIAL IS SO CHALLENGING. BUT YOU CAN GET USED TO IT! ^^
 

The Basic Characteristic Of Function Compositions


       I.          Composition Function is :
( f o g ) (x) =  f( g(x) )  = f composition g for x

Example ^^ :

  1.  f(x) = 5x – 4 and g(x) = 2x + 8
( f o g )? = f( g(x) ) 
f( 2x + 8 )  ----->  5( 2x + 8 ) – 4 ---> 10x + 40 – 4 ----> 10x + 36
as you can see above ...
Basically change the X value of F(x) into g(x) so become f( g(x) ) = f( 2x + 8 )   and because the F(x) = 5x – 4 logically F( 2x + 8) = 5( 2x + 8) – 4     ^^   ----->   10x + 8

How about ( g o f )?
Value still the same : f(x) = 5x – 4 and g(x) = 2x + 8
( g o f ) =  g( f(x) )
g(5x -4) ------>  2(5x – 4) + 8   ----->  10x – 8 + 8 = 10x    ^^

The answer is different so this is mean ( f o g )  IS NOT THE SAME AS ( g o f )


2.      F(x) = x2 + 2x – 3 and g(x) = 5x -1
( f o g )? = f( g(x) ) 
f(5x – 1) ------>  (5x – 1)2 + 2(5x – 1) – 3
               ------->  25x – 10x + 1 + 10x – 2 - 3
               ------->  (25x – 4) the answer!

How about ( g o f )(-1) ?
Value still the same :  F(x) = x2 + 2x – 3 and g(x) = 5x - 1
( g o f ) =  g( f(x) ) ---> ( g o f )(-1) = g( f(-1) )
5(x2 + 2x – 3) – 1 ----->  What was asked is ( g o f )(-1) . so change the x from ( f(x) )into value -1 FIRST like this  -----> 5((-1)2 + 2(-1) – 3) – 1 
---> 5(1 -2 – 3) – 1
---> 5(-4) – 1 = -21 the answer!


Here some other Characteristic ^^   :
  1.  Function Compositions is NOT commutative 
           ( f o g )  IS NOT THE SAME AS ( g o f )
     2.  Function Compositions IS Associative
            ( ( f o g ) o h)(x)  =  ( f o (g o h ) )(x)
     3.  There is Identity Function I(x) = x
           so ---> ( f o I )(x) = ( I o f )(x) = f(x)


Komentar

Postingan populer dari blog ini

Latihan Soal Reaksi Redoks dan Elektrokimia SMA Kelas XII

15 Soal SIMAK UI 2019 KIMIA dengan Pembahasan

Pembahasan Soal Bunga Majemuk dan Anuitas Matematika SMA