How To Determine Circle Equations


II.        LOOK FOR CIRCLE EQUATIONS ^^

         Now the reverse, how to find the equation of the circle if known its center and radius.
     Determine the equation of the circle below :
1.     Center (0,0) r = 3
2.     Center (-3, -1) r = 6
3.   Point (6, 8) is on a Circle A the center is (0.0). The circle equations?
            Answer 
  1. For the center (0,0) The circle equation  : x² + y² = r²     
o   So, the equation circlex² + y² = 3


2. For the center not (0,0) r The circle equation  : (x-a)² + (y-b)² =r²
o   So, the equation circle = (  x-(-3) )² + ( y – (-8) )² = 6²
o   The equation circle = (x+3)² + (y+8)² = 6²


3. For the Center (0,0) and point (6.8) are in the circle
because passed on the circle. (6.8) as (x, y)
Equation circle when center (0,0) =
x² + y² = r²   (x,y) = (6,8)
Because radius unknown we seek it first:
+ =
+ =
= 100
then the equation circle = + = 10²





So now, how to determine Circle Equations if the circle passed on some 3 points  that located in the circle itself ^^


Example :
 A Circle x² + y² + Ax + By + C = 0 passed on 3 points (2,0) , (0, -2) , (4, -2) The Circle Equations is?
 


Insert the points to the x² + y² + Ax + By + C = 0 as (x,y)

(2,0) ---> 2² + 0² + A(2) + B.0 + C = 0

                 4 + 2A + 0 + C = 0 ........................ (1)

(0, -2) --> 0² + (-2)² + A.0 + B(-2) + C = 0

                             4 – 0 - 2B + C = 0 .......................... (2)

(4, -2) ---> 4² + (-2)² + A(4) + B(-2) + C = 0

                  16 + 4 + 4A - 2B +  C = 0
                  20 + 4A - 2B +  C = 0 ....................(3)

 
there are 3 quations and let's solve the equations!
Eliminate (1) dan (2)
4 + 2A + 0 + C = 0 .... (1) 
4 – 0 - 2B + C = 0 ..... (2)        
--------------------------------   -
0 + 2A + 2B + 0 = 0 .... (4)  
 
Eliminate (3) dan (2)
20 + 4A - 2B +  C = 0 ...(3)
4 – 0 - 2B + C = 0 ..... (2)    
------------------------------    -

 16 + 4A = 0
 


A = -4 -------> Substitute A as -4 to .... (4)
2A + 2B  = 0 ---> -8 + 2B = 0 --> B =4 
Substitute A and B as its value to equations number (1) / (2) / (3) 
4 + 2A + 0 + C = 0 .... (1) 
 4 – 8 + 0 + C = 0 
C = 4

after we found all the value A, B, C insert them to : x² + y² + Ax + By + C = 0 
So the Circle Equations  x² + y² - 4x + 4y + 4 = 0 ^^ 

Komentar

Postingan populer dari blog ini

Latihan Soal Reaksi Redoks dan Elektrokimia SMA Kelas XII

15 Soal SIMAK UI 2019 KIMIA dengan Pembahasan

Pembahasan Soal Bunga Majemuk dan Anuitas Matematika SMA